In geometry, a sphere packing is an arrangement of non-overlapping within a containing space. The spheres considered are usually all of identical size, and the space is usually three- Euclidean space. However, sphere can be generalised to consider unequal spheres, spaces of other dimensions (where the problem becomes circle packing in two dimensions, or hypersphere packing in higher dimensions) or to non-Euclidean spaces such as hyperbolic space.
A typical sphere packing problem is to find an arrangement in which the spheres fill as much of the space as possible. The proportion of space filled by the spheres is called the packing density of the arrangement. As the local density of a packing in an infinite space can vary depending on the volume over which it is measured, the problem is usually to maximise the average or asymptotic density, measured over a large enough volume.
For equal spheres in three dimensions, the densest packing uses approximately 74% of the volume. A random packing of equal spheres generally has a density around 63.5%.
Two simple arrangements within the close-packed family correspond to regular lattices. One is called cubic close packing (or face-centred cubic, "FCC")—where the layers are alternated in the ABCABC... sequence. The other is called hexagonal close packing ("HCP"), where the layers are alternated in the ABAB... sequence. But many layer stacking sequences are possible (ABAC, ABCBA, ABCBAC, etc.), and still generate a close-packed structure. In all of these arrangements each sphere touches 12 neighboring spheres, and the average density is
In 1611, Johannes Kepler conjectured that this is the maximum possible density amongst both regular and irregular arrangements—this became known as the Kepler conjecture. Carl Friedrich Gauss proved in 1831 that these packings have the highest density amongst all possible lattice packings. In 1998, Thomas Callister Hales, following the approach suggested by László Fejes Tóth in 1953, announced a proof of the Kepler conjecture. Hales' proof is a proof by exhaustion involving checking of many individual cases using complex computer calculations. Referees said that they were "99% certain" of the correctness of Hales' proof. On 10 August 2014, Hales announced the completion of a formal proof using automated proof checking, removing any doubt.
When spheres are randomly added to a container and then compressed, they will generally form what is known as an "irregular" or "jammed" packing configuration when they can be compressed no more. This irregular packing will generally have a density of about 64%. Recent research predicts analytically that it cannot exceed a density limit of 63.4% This situation is unlike the case of one or two dimensions, where compressing a collection of 1-dimensional or 2-dimensional spheres (that is, line segments or circles) will yield a regular packing.
In dimensions higher than three, the densest lattice packings of hyperspheres are known for 8 and 24 dimensions. Very little is known about irregular hypersphere packings; it is possible that in some dimensions the densest packing may be irregular. Some support for this conjecture comes from the fact that in certain dimensions (e.g. 10) the densest known irregular packing is denser than the densest known regular packing.
In 2016, Maryna Viazovska announced a proof that the E8 lattice provides the optimal packing (regardless of regularity) in eight-dimensional space, and soon afterwards she and a group of collaborators announced a similar proof that the Leech lattice is optimal in 24 dimensions. This result built on and improved previous methods which showed that these two lattices are very close to optimal. The new proofs involve using the Laplace transform of a carefully chosen modular function to construct a radially symmetric function such that and its Fourier transform both equal 1 at the origin, and both vanish at all other points of the optimal lattice, with negative outside the central sphere of the packing and positive. Then, the Poisson summation formula for is used to compare the density of the optimal lattice with that of any other packing.. Video of an hour-long talk by one of Viazovska's co-authors explaining the new proofs. Before the proof had been formally refereed and published, mathematician Peter Sarnak called the proof "stunningly simple" and wrote that "You just start reading the paper and you know this is correct."
Another line of research in high dimensions is trying to find asymptotic bounds for the density of the densest packings. It is known that for large , the densest lattice in dimension has density between (for some constant ) and . Conjectural bounds lie in between. In a 2023 preprint, Marcelo Campos, Matthew Jenssen, Marcus Michelen and Julian Sahasrabudhe announced an improvement to the lower bound of the maximal density to , among their techniques they make use of the Rödl nibble.
When the second sphere is much smaller than the first, it is possible to arrange the large spheres in a close-packed arrangement, and then arrange the small spheres within the octahedral and tetrahedral gaps. The density of this interstitial packing depends sensitively on the radius ratio, but in the limit of extreme size ratios, the smaller spheres can fill the gaps with the same density as the larger spheres filled space. Even if the large spheres are not in a close-packed arrangement, it is always possible to insert some smaller spheres of up to 0.29099 of the radius of the larger sphere.
When the smaller sphere has a radius greater than 0.41421 of the radius of the larger sphere, it is no longer possible to fit into even the octahedral holes of the close-packed structure. Thus, beyond this point, either the host structure must expand to accommodate the interstitials (which compromises the overall density), or rearrange into a more complex crystalline compound structure. Structures are known which exceed the close packing density for radius ratios up to 0.659786.
Upper bounds for the density that can be obtained in such binary packings have also been obtained.
In many chemical situations such as , the stoichiometry is constrained by the charges of the constituent ions. This additional constraint on the packing, together with the need to minimize the Coulomb energy of interacting charges leads to a diversity of optimal packing arrangements.
The upper bound for the density of a strictly jammed sphere packing with any set of radii is 1an example of such a packing of spheres is the Apollonian sphere packing. The lower bound for such a sphere packing is 0an example is the Dionysian sphere packing.
Despite this difficulty, K. Böröczky gives a universal upper bound for the density of sphere packings of hyperbolic n-space where n ≥ 2. In three dimensions the Böröczky bound is approximately 85.327613%, and is realized by the horosphere packing of the order-6 tetrahedral honeycomb with Schläfli symbol {3,3,6}. In addition to this configuration at least three other horosphere packings are known to exist in hyperbolic 3-space that realize the density upper bound.
The problem of finding the arrangement of n identical spheres that maximizes the number of contact points between the spheres is known as the "sticky-sphere problem". The maximum is known for n ≤ 11, and only conjectural values are known for larger n.
For further details on these connections, see the book Sphere Packings, Lattices and Groups by Conway and Neil Sloane.
|
|